Biotransformation of the polycyclic aromatic hydrocarbon pyrene in the marine polychaete Nereis virens.
نویسندگان
چکیده
In vivo and in vitro biotransformation of the polycyclic aromatic hydrocarbon (PAH) pyrene was investigated in the marine polychaete Nereis virens. Assays were designed to characterize phase I and II enzymes isolated from gut tissue. High-pressure liquid chromatography measurement of 1-hydroxypyrene, pyrene-1-glucuronide, pyrene-1-sulfate, and pyrene-1-glucoside appeared to be a sensitive method for estimating the activity of pyrene hydroxylase, glucuronosyl transferase, and sulfotransferase. Total pyrene in gut tissue after a 5-d exposure to 10 microg/g dry weight pyrene constituted 65% pyrene-l-glucuronide, 12% pyrene-1-sulfate, 2% pyrene-1-glucoside, 4% 1-hydroxypyrene, and 17% pyrene, indicating that glucuronidation is the prominent phase II pathway in this organism. Only pyrene hydroxylase activity was induced significantly after pre-exposure to sediment-associated pyrene (10 microg/g dry wt). Apparent kinetic parameters were determined for all enzymatic reactions. Glucuronidation was confirmed as being the prominent phase II reaction, based on its high apparent maximum velocity (Vmax(a)). Sulfation had the lowest apparent Michaelis constant (Km(a)), indicating high specificity. Apparent kinetic parameters for pyrene hydroxylase activity were changed after induction with pyrene. Induced worms showed increased Vmax(a)) and decreased Km(a) compared to noninduced worms, indicating that the relative amount of the cytochrome P450 enzyme(s) responsible for pyrene hydroxylation is increased. Our findings show that N. virens has a high biotransformation capacity for PAHs, with inducible pyrene hydroxylase activity, and that the most prominent phase II pathway in this organism is glucuronidation.
منابع مشابه
Genotoxic damage in polychaetes: a study of species and cell-type sensitivities.
The marine environment is becoming increasingly contaminated by environmental pollutants with the potential to damage DNA, with marine sediments acting as a sink for many of these contaminants. Understanding genotoxic responses in sediment-dwelling marine organisms, such as polychaetes, is therefore of increasing importance. This study is an exploration of species-specific and cell-specific dif...
متن کاملInfluence of biotransformation on trophic transfer of the PAH, fluoranthene.
The persistence of polycyclic aromatic hydrocarbons (PAHs) in marine sediments may be influenced by benthic invertebrate bioturbation. Through processes such as deposit-feeding and enhancement of microbial metabolic activity PAHs may be remobilized from the sediment compartment, and either transferred to organisms at higher trophic levels or to the overlying water column, both processes inevita...
متن کامل1-Hydroxypyrene glucuronide as the major aqueous pyrene metabolite in tissue and gut fluid from the marine deposit-feeding polychaete Nereis diversicolor.
Both 1-hydroxypyrene and 1-hydroxypyrene glucuronide are identified as the primary phase I and phase II metabolites of the four-ringed polycyclic aromatic hydrocarbon (PAH) pyrene in the marine deposit-feeding polychaete Nereis diversicolor. Identification of pyrene and primary metabolites was performed using high-pressure liquid chromatography (HPLC) with diode-array detection and fluorescence...
متن کامل1-Hydroxypyrene as a biomarker of PAH exposure in the marine polychaete Nereis diversicolor.
The possibility of using the pyrene metabolite 1-hydroxypyrene as a biomarker of polycyclic aromatic hydrocarbons (PAHs) exposure was investigated by exposure of the marine polychaete Nereis diversicolor to several PAHs in the laboratory. Animals were exposed to pyrene alone and to five different PAHs - phenanthrene, anthracene, pyrene, benzo[a]pyrene and benzo[k]flouranthene. After five days o...
متن کاملApplication of silicone rubber passive samplers to investigate the bioaccumulation of PAHs by Nereis virens from marine sediments.
The availability of polycyclic aromatic hydrocarbons (PAHs) from marine sediments to the ragworm (Nereis virens) was studied. Concentrations of PAHs in pore waters were determined using silicone rubber passive samplers. Calculated bioconcentration factors confirmed that partitioning of PAHs between the lipid phase of the polychaetes and pore water is a passive process. Low biota-sediment accumu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental toxicology and chemistry
دوره 24 11 شماره
صفحات -
تاریخ انتشار 2005